ATTACHMENT 7.2B Licensee's 2009 Water Quality

1.0 Surveys

In 2009, Yuba County Water Agency (YCWA or "Licensee") collected 35 surface water samples in stream reaches and reservoirs potentially affected by YCWA's Yuba River Development Project (Project) and monitored dissolved oxygen for 18 days downstream of Project facilities, United States Army Corp of Engineers' (USACE) facilities, and non-Project diversions. Starting on September 5 and completed by October 7, data collection was conducted within the summer low-flow season when Project effects might be expected to be most pronounced.

Of the 35 surface water samples collected, 17 were gathered from locations upstream, downstream and within New Bullards Bar Reservoir and USACE's Englebright Reservoir, as well as four locations downstream of the Project towards the Yuba River's confluence with the Feather River. The remaining 18 samples were collected near reservoir recreation facilities on and around the Labor Day holiday period and were analyzed for bacteria and hydrocarbons. Concurrent with surface water sample collection, dissolved oxygen was continuously monitored for 18 days downstream of New Bullards Bar, Colgate Powerhouse, Narrows 2 Powerhouse, and USACE's Daguerre Point Dam.

Licensee's 2009 water quality sample collection, analysis and results are summarized in the attached tables, Tables 7.2B-1 through 7.2B-7:

Table 7.2B-1	2009 Reservoir and stream reach sampling locations.
Table 7.2B-2	Water quality parameters and associated methods, reporting limits and laboratory holding times.
T 11 7 0D 0	
Table 7.2B-3	Standards, criteria and benchmarks used for determining consistency
	with Basin Plan Objectives and designated beneficial uses of water in
	project reservoirs and project-affected stream reaches.
Table 7.2B-4	2009 Sample-specific hardness dependent freshwater aquatic life
	criteria.
Table 7.2B-5	2009 Reservoir and stream reach sample results.
Table 7.2B-6	2009 Bacteria and Total Petroleum Hydrocarbon (TPH) sample
	results.
Table 7.2B-7	2009 Average daily dissolved oxygen downstream of Project facilities,
	USACE facilities, and non-Project diversions for 18 days.

Copies of Tables 7.2B-5 through 7.2B-7 are also available in Excel format from Licensee upon request. Detailed maps of the Project Area¹ are provided in Appendix D.

The Project Area was defined as the area within the Federal Energy Regulatory Commission (FERC) Project Boundary and the land immediately surrounding the FERC Project Boundary (i.e., within about 0.25 mile of the FERC Project Boundary) and included Project-affected reaches between facilities and downstream to the next major water controlling feature or structure, the United States Army Corps of Engineers' (USACE) Daguerre Point Dam.

2.0 <u>References</u>

- American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF). 2010. Standard Methods for the Examination of Water and Wastewater. 21st edition. Washington, D.C. <u>http://www.standardmethods.org/</u>
- California Department of Public Health (CDPH). 2010. California Code of Regulations, Title 22, Division 4, Chapter 15, Domestic Water Quality and Monitoring Regulations. <u>http://www.cdph.ca.gov/certlic/drinkingwater/Pages/Lawbook.aspx</u>
- Central Valley Regional Water Quality Control Board (CVRWQCB). 1998. The Water Quality Control Plan (Basin Plan) for the Sacramento River Basin and the San Joaquin River Basin. 4th edition. California Regional Water Quality Control Board, Central Valley Region. Revised in September 2009 with the Approved Amendments. <u>http://www.waterboards.ca.gov/centralvalley/water_issues/basin_plans/</u>
- Marshack, J. 2008. A Compilation of Water Quality Goals. California Regional Water Quality Control Board, Central Valley Region, Rancho Cordova, California. <u>http://www.swrcb.ca.gov/centralvalley/water_issues/water_quality_standards_limits/water_quality_goals/index.html</u>
- U.S. Environmental Protection Agency (EPA). 1996. Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. EPA 821-R-95-034. United States Environmental Protection Agency, Washington, DC. July 1996. <u>http://www.ecy.wa.gov/programs/wq/wastewater/method_1669.pdf</u>
 - . 2000. Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California. 40 CFR 131, pages 31682-31711. Federal Register May 18. <u>http://www.epa.gov/fedrgstr/EPA-WATER/2000/May/Day-18/w11106.pdf</u>
- . 2003. Bacterial Water Quality Standards for Recreational Waters (Freshwater and Marine Waters). Office of Water Report No. EPA-823-R-03-008. June. http://www.epa.gov/waterscience/beaches/local/sum2.html
- _____. 2010b. Clean Water Act Analytical Methods. http://water.epa.gov/scitech/swguidance/methods/index.cfm

	von and su	eam reach s	ampning io	cations.	
	Study element				
Water Chemistry Sample ^{1,2}	Bacteria and TPH Sample ¹	Dissolved Oxygen 18-day Monitoring ³	Sample Depth	Location	Notes
		MIDDLE	YUBA RIVE	R	
Х			Surface	Above Our House Dam Diversion	Immediately upstream of the impoundment; SYRCL sampling Site
Х			Surface	Below Our House Dam Diversion	Immediately downstream of dam
		OREG	ON CREEK		
Х			Surface	Above Log Cabin Diversion Dam	Immediately upstream of the impoundment and above inflow from tunnel
Х			Surface	Below Log Cabin Diversion Dam	Immediately downstream of dam
		NORTH	YUBA RIVER	1	
Х			Surface	Below Fiddle Creek at Highway 49 ¹	In flowing water upstream of New Bullards Bar; SYRCL Sampling Site
	Х		Surface	In-reservoir, upstream of both boat ramps	Non-recreation site for bacteria sampling comparisons
	Х		Surface	Emerald Cove Near the Boat Ramp	
	Х		Surface	Dark Day Cove Near the Boat Ramp	
Х			Surface	One Site Near Dam	
Х			Bottom		
Х		Х	Surface	Below New Bullards Bar Dam	
	I	YUB.	A RIVER		
Х		Х	Surface	Below Colgate Powerhouse	
Х			Surface		
Х			Bottom		
	I	SOUTH Y	YUBA RIVER		
Х			Surface	South Yuba River State Park – South Yuba River upstream of Englebright high-water line	SYRCL's Bridgeport sampling site
		YUB	A RIVER		
Х		Х	Surface	Narrows 2 Tailrace/ Downstream of USACE's Englebright Dam	
	1		<i>a a</i>	Downstream of Deer Creek	SYRCL Sampling Site
Х			Surface	confluence; at Highway 20	STRCL Sampling Site
x x		 X	Surface	confluence; at Highway 20 Downstream of USACE's Daguerre Point Diversion Dam	SYRCL Sampling Site
				Downstream of USACE's Daguerre Point Diversion	
	Chemistry Sample 1.2 X X X X X X X X X X X X X X X X X X X	Bacteria and TPH Sample 1 X X	Bacteria and TPH Sample Oxygen 18-day Monitoring 3 X X	Bacteria and TPH Sample 12Daygen 18-day Monitoring 3DepthSample 12IPH Sample 1Oxygen 18-day Monitoring 3DepthXSurface <tr< td=""><td>Chemistry SampleBedderia and TPH SampleOxygen 18-day MonitoringsDepthLocationXSurfaceAbove Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceAbove Log Cabin Diversion DamXSurfaceBelow Log Cabin Diversion DamXSurfaceBelow Log Cabin Diversion DamXSurfaceBelow Fiddle Creek at Highway 49'XSurfaceBelow Fiddle Creek at Highway 49'XSurfaceDark Day Cove Near the Boat RampXSurfaceDark Day Cove Near the Boat RampXSurfaceOne Site Near DamXXSurfaceOne Site Near DamXXSurfaceBelow New Bullards Bar DamXSurfaceBottomOne Site Near DamX<td< td=""></td<></td></tr<>	Chemistry SampleBedderia and TPH SampleOxygen 18-day MonitoringsDepthLocationXSurfaceAbove Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceBelow Our House Dam DiversionXSurfaceAbove Log Cabin Diversion DamXSurfaceBelow Log Cabin Diversion DamXSurfaceBelow Log Cabin Diversion DamXSurfaceBelow Fiddle Creek at Highway 49'XSurfaceBelow Fiddle Creek at Highway 49'XSurfaceDark Day Cove Near the Boat RampXSurfaceDark Day Cove Near the Boat RampXSurfaceOne Site Near DamXXSurfaceOne Site Near DamXXSurfaceBelow New Bullards Bar DamXSurfaceBottomOne Site Near DamX <td< td=""></td<>

Table 7.2B-1 2009 reservoir and stream reach sampling locations

² Trace metals samples collected using the clean-hands/dirty hands sample collection technique (EPA 1996)

³ Hydrolab sondes were placed in moving water.

Key: X = A sample was collected at this location or a dissolved oxygen monitoring sonde was placed at this location.

SYRCL= South Yuba River Citizens League

USACE= United States Army Corps of Engineers

-- = not applicable

Table 7.2B-2. Water quality parameters and associated methods	, reporting lim	its and laboratory
holding times.		

Analyte		Method ¹	Target Reporting Limit µg/L (or other)	Hold time	
	B	ASIC WATER QUALITY- FIEL			
Dissolved Oxygen	DO	SM 4500-O	0.1 mg/L	Field	
Flow		gage or visual estimate ³		Field	
оН		SM 4500-H	0.1 su	Field	
Secchi Disc				Field	
Specific conductance		SM 2510A	0.001 µSiemens/cm	Field	
Гurbidity		SM 2130 B	0.1 NTU	Field	
	BASIC	WATER QUALITY-LABORA	ATORY ⁴		
Total Organic Carbon	TOC	SM 5310	0.2 mg/L	28 d	
Dissolved Organic Carbon	DOC	EPA 415.1 D	0.5/0.1	28 d	
Total Dissolved Solids	TDS	EPA 2540 C/SM 2340 C	1 mg/L	7d	
Total Suspended Solids	TSS	EPA 2520 D SM 2340 D	1 mg/L	7d	
		INORGANIC IONS ⁴			
Alkalinity, Total		SM 2340 B	2000	14 d	
Calcium	Ca	EPA 6010 B	30	180 d	
Chloride	Cl	EPA 300.0	20	28 d	
Hardness (measured value)		EPA 2340 B SM 2340 C	1 mg/L as CaCO ₃	14 d	
Magnesium	Mg	EPA 6010 B	1	180 d	
Potassium	K	EPA 6010 B	500	180 d	
Sodium	Na	EPA 6010 B	29	180 d	
Sulfate	SO_4^{2-}	EPA 300.0	1.0 mg/L	28 d	
Sulfide	S ²⁻	SM 4500 S2 – D	0.05 mg/L	28 d	
		NUTRIENTS⁴			
Ammonia as N, total		EPA 4500-NH3 SM 4500-NH3	0.02	28 d <ph 2<="" td=""></ph>	
Kjeldahl Nitrogen as N, total	TKN	SM 4500 N	100	28 d <ph 2<="" td=""></ph>	
Nitrate-Nitrite		EPA 300.0	2	28 d <ph 2<="" td=""></ph>	
Orthophosphate, dissolved	PO ₄	EPA 365.1 EPA 300.0	0.01	48 h at 4 °C	
Phosphorus, total	TP	SM4500 P	20	28 d <ph 2<="" td=""></ph>	
		METALS (total and dissolved) ⁵			
Aluminum (total and dissolved)	Al	EPA 200.8/EPA 1638	4.0/ 0.4	180 d	
Arsenic (total and dissolved)	As	EPA 200.8/1638	0.15/0.04	180 d	
Cadmium (total and dissolved)	Cd	EPA 200.8/1638	0.020/0.004	180 d	
Chromium, Total (total and dissolved)	Cr	EPA 200.8/1638	0.010/0.03	180 d	
Copper (total and dissolved)	Cu	EPA 200.8/1638	0.10/0.01	180 d	
fron (total and dissolved)	Fe	EPA 200.8/1638	10.0/3.2	180 d	
Lead (total and dissolved)	Pb	EPA 200.8/EPA 1638	0.040/0.003	180 d	
Mercury (total)	Hg	EPA 1631	0.0005/0.00008	28 d	
Methylmercury (total and dissolved)	CH ₃ Hg	EPA 1630	0.00005/0.000019	90 d	
Nickel (total and dissolved)	Ni	EPA 200.8/1638	0.10/0.01	180 d	
Selenium (total)	Se	EPA 200.8/1638	0.60/0.19	180 d	
Silver (total and dissolved)	Ag	EPA 200.8/1638	0.20/0.006	180 d	
Zinc (total and dissolved)	Zn	EPA 200.8/1638	0.2/0.1	180 d	

Table 7.2B-2. (continued)

Analyte		Method ¹	Target Reporting Limit µg/L (or other)	Hold time		
BACTERIA ⁶						
Total coliform		SM 9221	1.1 MPN	24 h		
Fecal coliform		SM 9221	1.1 MPN	24 h		
Escherichia coli E. coli		SM 9221	1.1 MPN	24 h		
	Р	ETROLEUM HYDROCARBON	√S ⁴			
Total Petroleum Hydrocarbons (gasoline range)	TPH-g	EPA SW8015B	50	14 d		
Oil & Grease	O&G	Visual Observation				

¹ All methods EPA methods or equivalent (APHA 2010; EPA 1996; EPA 2010).

² In situ measurements were collected with the Hydrolab Quanta.

³ Sampling locations were co-located with temperature monitoring sites and with flow gages, as much as possible; if flow was not measured, it was visually estimated.

⁴ Analyses were performed by CalScience Environmental Laboratories, Inc. in Garden Grove, California, a California-certified laboratory.

⁵ Metals analyses were performed by Frontier GeoSciences, Inc. of Seattle, Washington, a California-certified laboratory. Holding times

for metals are for samples after filtration and preservation.⁶ Bacteria samples were sent to Cranmer Engineering and Analytical Laboratory in Grass Valley, California.

Key: EBA = United States Environmen

EPA = United States Environmental Protection Agency CaCO₃ = Calcium carbonate

cm = centimeter

d = days

h = hours

 $\mu g/L =$ micrograms per liter (equals parts per billion)

mg/L = milligrams per liter (equals parts per million)

NTU = Nephelometric Turbidity Units

SM = Standard Method

su = Standard Unit

-- = not available or not applicable

Table 7.2B-3. Standards, criteria and benchmarks used for determining consistency with Basin Plan Objectives and designated beneficial uses of water in Project reservoirs and Project-affected stream reaches.¹

tream reaches.								
Basin Plan Water Quality Objective (Potentially Affected Beneficial Uses)	Symbol or Standard, Criteria or Abbreviation Benchmark Value ²		Reference	Notes				
BIOSTIMULATORY SUBSTANCES (COLD, SPAWN)								
Total Kjeldahl Nitrogen	TKN	None						
Total Phosphorous	ТР	None						
	CHI	EMICAL CONSTITUENTS (A	GR, MUN)					
Alkalinity (as CaCO ₃)		20 mg/L (minimum)	Marshack 2008	Low alkalinity can affect water treatment				
Aluminum	Al	1 mg/L	CDHS 2005 cited in CVRWQCB 1998	Title 22 Primary MCL				
Arsenic	As	0.010 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL				
Cadmium	Cd	5 µg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL				
Calcium	Ca	None						
Chromium (total)	Cr (total)	50 μg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL				
Copper	Cu	1.3 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL				
Lead	Pb	15 μg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL				

Table 7.2B-3. (continue) Basin Plan Water Quality Objective (Potentially Affected Beneficial Uses) Affected Beneficial Uses)	Symbol or Abbreviation	Standard, Criteria or Benchmark Value ²	Reference	Notes
,	CHEMIC	AL CONSTITUENTS (AGR, N	MUN) (continued)	
Mercury (inorganic)	Hg	0.002 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Nickel	Ni	0.1 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Nitrate	NO ₃	45 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Nitrite	NO ₂	1 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Nitrate + Nitrite	$NO_3 + NO_2$	10 mg/L (combined total)	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Potassium	K	None		
Selenium	Se	0.05 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL
Sodium	Na	20 mg/L	Marshack 2008	Sodium Restricted Diet ³
Specific conductance		150 µmhos	CVRWQCB 1998	Aquatic Life Protection
Zinc	Zn	5 mg/L	CDPH 2010 cited in CVRWQCB 1998	Title 22 Secondary MCL
	DI	SSOLVED OXYGEN (COLD,	SPAWN)	
Dissolved Oxygen	DO	7.0 mg/L (minimum)	CVRWQCB 1998	Aquatic life protection
	FL	OATING MATERIAL (REC-	1, REC-2)	
Floating Material		Narrative Criteria	CVRWQCB 1998	Aesthetic – Absent by visual observation
	T	OIL & GREASE (REC-1, R	EC-2)	1
Oil & Grease		Narrative Criteria	CVRWQCB 1998	Aesthetic – Absent by visual observation
Total Petroleum Hydrocarbons	TPH	None		
	T	pH (COLD, SPAWN, WII		1
pH	 SEDIMENT AN	6.5-8.5 ND SETTLEABLE SOLIDS (R	CVRWQCB 1998 EC-2, SPAWN, WILD)	Aquatic life protection
Sediment		Narrative Criteria	CVRWQCB 1998	
		TASTES & ODORS (MU	N)	L
Aluminum	Al	0.2 mg/L	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Chloride	Cl	250 mg/L	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Copper	Cu	1 mg/L	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Iron	Fe	0.3 mg/L	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Silver	Ag	0.1 mg/L	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Specific Conductance		900 µmhos	CDPH 2005 cited in CVRWQCB 1998	Title 22 Secondary MCL
Sulfate	SO ₄	250 mg/L	CDPH 2005 cited in CVRWQCB 1998 CDPH 2005 cited in	Title 22 Secondary MCL
Total Dissolved Solids	TDS	500 mg/L	CDPH 2005 cited in CVRWQCB 1998 CDPH 2005 cited in	Title 22 Secondary MCL
Zinc	Zn	5 mg/L	CVRWQCB 1998	Title 22 Secondary MCL
		TEMPERATURE (COLD, SP		·
Temperature		Narrative Criteria	CVRWQCB 1998	
•		TOXICITY (COLD, SPAWN,		
Alkalinity (as CaCO ₃)		20 mg/L (minimum concentration except where natural concentrations are less.)	Marshack 2008	Low alkaline waters susceptible to acidification

Table 7.2B-3. (continu Basin Plan Water Quality Objective (Potentially Affected Beneficial Uses)	Symbol or Abbreviation	Standard, Criteria or Benchmark Value ²	Reference	Notes
Affected Bellencial Uses)	TOXI	CITY (COLD, SPAWN, MUN)) ⁴ (continued)	
Aluminum	Al	$0.087 \ \mu g/L^5$	Marshack 2008	EPA AWQC; aquatic life protective
		24.1 mg/L (CMC); 4.1-5.9 mg/L (CCC)	EPA 2000	CTR criteria over 0-20°C assuming pH 7.0
Ammonia as N (pH and Temp dependent)	NH ₃ -N	5.6 mg/L (CMC); 1.7-2.4 mg/L (CCC)	EPA 2000	CTR criteria over 0-20°C assuming pH 8.0
		0.9 mg/L (CMC); 0.3-0.5 mg/L (CCC)	EPA 2000	CTR criteria over 0-20°C assuming pH 9.0
Arsenic	As	340 μg/L (CMC); 150 μg/L (CCC)	EPA 2000	CTR criteria
		0.23 μg/L (CMC); 0.15 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 5 mg/L as CaCO ₃
Cadmium	Cd	0.4 μg/L (CMC); 0.34 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 10 mg/L as CaCO ₃
(hardness dependent)	Cu	0.56 μg/L (CMC); 0.53 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 15 mg/L as CaCO ₃
		0.83 μg/L (CMC); 0.95 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 25 mg/L as CaCO ₃
	Cr	47.19 μg/L (CMC); 15.31 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 5 mg/L as CaCO ₃
Chromium		83.25 μg/L (CMC); 27.0 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 10 mg/L as CaCO ₃
(hardness dependent)		116.03 μg/L (CMC); 37.64 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 15 mg/L as CaCO ₃
		176.31 μg/L (CMC); 57.19 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 25 mg/L as CaCO ₃
		0.83 μg/L (CMC); 0.72 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 5 mg/L as CaCO ₃
Copper	Cu	1.6 μg/L (CMC); 1.3 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 10 mg/L as CaCO ₃
(hardness dependent)		2.34 μg/L (CMC); 1.84 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 15 mg/L as CaCO ₃
		3.79 μg/L (CMC); 2.85 μg/L (CCC)	EPA 2000	CTR for unfiltered sample assuming hardness of 25 mg/L as CaCO ₃
		2 μg/L (CMC) 0.086 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 5 mg/L as CaCO ₃
Lead	рь	5 μg/L (CMC) 0.191 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 10 mg/L as CaCO ₃
(hardness dependent)	Pb	8 μg/L (CMC) 0.303 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 15 mg/L as CaCO ₃
		0.54 μg/L (CCC) 14 μg/L (CMC)	EPA 2000	CTR for dissolved sample assuming hardness of 25 mg/L as CaCO ₃

Table 7.2B-3. (continued)

Table 7.2B-3. (continu Basin Plan Water Quality Objective (Potentially Affected Beneficial Uses)	Symbol or Abbreviation	Standard, Criteria or Benchmark Value ²	Reference	Notes				
TOXICITY (COLD, SPAWN, MUN) ⁴ (continued)								
Mercury	Hg	0.050 μg/L	EPA 2000 40 CFR 131.38	CTR/Federal Register. 5/18/00				
		37.2 μg/L (CMC); 4.1 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 5 mg/L as CaCO ₃				
Nickel	Ni	66.9 μg/L (CMC); 7.4 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 10 mg/L as CaCO ₃				
(hardness dependent)	111	94.3 μg/L (CMC); 10.5 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 15 mg/L as CaCO ₃				
		145.2 μg/L (CMC); 16.1 μg/L (CCC)	EPA 2000	CTR for dissolved sample assuming hardness of 25 mg/L as CaCO ₃				
Nitrate-Nitrite	NO ₃ -N+NO ₂ -N	10 mg/L (combined total)	CDPH 2010 cited in CVRWQCB 1998	Title 22 Primary MCL ("Blue baby Syndrome")				
		0.02 μg/L (CMC) instantaneous	EPA 2000	CTR for unfiltered sample assuming hardness of 5 mg/L as CaCO ₃				
Silver	Ag	0.08 μg/L (CMC) instantaneous	EPA 2000	CTR for unfiltered sample assuming hardness of 10 mg/L as CaCO ₃				
(hardness dependent)		0.16 μg/L (CMC) instantaneous	EPA 2000	CTR for unfiltered sample assuming hardness of 15 mg/L as CaCO ₃				
		0.37 µg/L (CMC) instantaneous	EPA 2000	CTR for unfiltered sample assuming hardness of 25 mg/L as CaCO ₃				
	Zn	9.47 μg/L	EPA 2000	CTR for unfiltered sample assuming hardness of 5 mg/L as CaCO ₃				
Zinc		17.03 μg/L	EPA 2000	CTR for unfiltered sample assuming hardness of 10 mg/L as CaCO ₃				
(hardness dependent)		24.01 μg/L	EPA 2000	CTR for unfiltered sample assuming hardness of 15 mg/L as CaCO ₃				
		37.02 μg/L	EPA 2000	CTR for unfiltered sample assuming hardness of 25 mg/L as CaCO ₃				
	TUI	RBIDITY (COLD, SPAWN, WI	LD, MUN)					
Turbidity	NTU	increase < 1 NTU for 1-5 NTU background; increase < 20% for 5-50 NTU background	CVRWQCB 1998	Aesthetic, disinfection, egg incubation				
		BACTERIA (MUN, REC-	1)					
Total coliform		< 10,000 MPN per 100 mL < 240 MPN per 100 mL (geometric mean);	EPA 2003	Water contact recreation, single-day sample; Water contact recreation, 30- day geometric mean				
Fecal coliform		<pre>< 200 MPN per 100 mL (geometric mean); < 10% of samples > 400 MPN per 100 mL</pre>	CVRWQCB 1998	Water contact recreation, 30- day geometric mean; with individual samples not > 400 MPN/100 mL				

Table 7.2B-3. (continued)

Table 7.2B-3. (continued)

Basin Plan Water Quality Objective (Potentially Affected Beneficial Uses)	Symbol or Abbreviation Benchmark Value ²		Reference	Notes		
BACTERIA (MUN, REC-1) (continued)						
Escherichia coli E. coli		 < 126 MPN per 100 mL (geometric mean) <235 MPN per 100 mL in any single sample 	EPA 2003	Water contact recreation, 30- day geometric mean		

¹ Beneficial uses are designated in CVRWQCB 1998; a constituent may be listed under more than one beneficial use.

² When a standard or criterion was not available, benchmarks were excerpted from EPA (2003) and Marshack (2008).

Guidance level to protect those individuals restricted to a total sodium intake of 500 mg/day (Marshack 2008).

California Toxics Rule (CTR) values assume total recoverable concentrations of filtered samples (dissolved fraction).

Benchmark is likely overly protective, as EPA is aware of field data indicating that many high quality waters in the U.S. contain more than 0.087 µg /L aluminum when either total recoverable or dissolved is measured (Marshack 2008)

Key:

AWQC = Ambient Water Quality Criteria

EPA = Environmental Protection Agency

 $CaCO_3 = Calcium carbonate$

CMC = Criterion Maximum Concentration (1-hour acute exposure) for aquatic toxicity as defined by EPA (2000)

CCC = Criterion Continuous Concentration (4-day chronic exposure) for aquatic toxicity as defined by EPA (2000)

CTR = California Toxics Rule

MCL = Maximum Contaminant Level

 μ mhos = micro-mhos

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

MPN = Most Probable Number

NTU = Nephelometric turbidity units

SM = Standard Method

su = standard unit

-- = not available or not applicable

			Hardness Dep	endent Aquatic I	Life Criteria ^{1,2}					
Hardness	Criteria Continuous Concentration (CCC) (dissolved)									
(mg/L)	Cadmium	Chromium	Copper	Lead	Nickel	Silver	Zinc			
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)			
21	0.72	49.5	2.36	0.44	13.8	0.24	31.5			
34	1.02	73.5	3.56	0.76	20.8	0.54	47.4			
36	1.07	77.1	3.74	0.81	21.9	0.60	49.7			
37	1.09	78.8	3.83	0.84	22.4	0.62	50.9			
38	1.11	80.5	3.92	0.87	22.9	0.65	52.0			
40	1.15	84.0	4.09	0.92	23.9	0.71	54.4			
48	1.32	97.5	4.78	1.12	27.9	0.98	63.4			
64	1.64	123	6.12	1.54	35.6	1.60	80.9			
72	1.78	136	6.76	1.76	39.3	1.96	89.4			
75	1.84	140	7.00	1.84	40.7	2.10	92.5			
79	1.91	146	7.32	1.95	42.6	2.30	96.8			
90	2.10	163	8.19	2.24	47.5	2.88	108			

Table 7.2B-4. Sample-specific hardness dependent freshwater aquatic life criteria.

Note: All concentrations are in µg/L or parts-per-billion.

Significant figures presented herein are an artifact of the Excel spreadsheet used for calculations 2

California Toxics Rule (dissolved fraction) calculations excerpted from Marshack (2008): Cadmium (Cd) $CCC_{Cd} = [e^{[0.7852[ln(Hardness)]]-2.715}][1.11672-[ln(Hardness)*0.041838]]$

		J[1.11072-[in(11a1a1a3) 0.041050]]
Chromium (Cr) CCC		lardness)]]+1.561][0.86]
Copper (Cu) CCC		(Hardness)]]+1.702][0.96]
Lead (Pb) CCC	$e_{\rm Pb} = [e^{\lfloor 1.273 \lfloor \ln(l + 1) \rfloor}]$	Hardness)]]-4.705][1.46203-[ln(Hardness)*0.145712]]
Nickel (Ni) CCC		lardness)]]+0.0584][0.997]
Silver (Ag) CCC		ardness)]]-6.52][0.85]
Zinc (Zn) CCC	$e_{\text{Zn}} = [e^{\lfloor 0.8473 \rfloor \ln}]$	[Hardness)]]+0.884][0.986]

Yuba County Water Agency Yuba River Development Project FERC Project No. 2246

Page Left Blank

1	able /.2B-3	b. Reserve	oir and stream	am reach sam	ple results.																		
		River Name	North Yuba River	Middle Yuba River	Middle Yuba River	Oregon Creek	0		North Yuba River	North Yuba River	North Yuba River	Yuba l	River	South Yuba River	Yuba	a River	Yuba River	Yuba River	Yuba	River	Yuba River	Yuba River	Yuba River
		Sample Location	New Bullards Bar Inflow	Above Our House Dam Diversion	Below Our House Dam Diversion	Above Log Cabin Diversion Dam		Diversion	New Bullards Bar Reservoir ²	New Bullards Bar Reservoir ²	Below New Bullards Bar Dam	Below C Tun	0	Englebright Inflow		ebright ervoir ²	Englebright Reservoir ²	Below Smartville gag			Below Daquerre Diversion Dam	At Walnut Avenue	Marysville
		Lat./Long.	0655730, 435499	9 0672624, 4364531		0667280, 4367442	-		660148, 4362475	0660148, 4362476		0655730,	4354999		0649344	, 4344972	0649344, 4344973	06449012, 43443	49 0643788,	4342522 0	634234, 4341040	0627459, 4337347	0621943, 4332656
Analyte	Standard Criteria or	Sample ID	103410-2-1	103410-2-2	103410-2-3	103410-2-4	10341	10-2-5	103410-1-1A	103410-1-1B	103410-2-6	10341		103410-2-8	1034	0-1-2A	103410-1-2B	103410-2-9	10341	0-2-10	103410-2-11	103410-2-12	103410-2-13
v	Benchmark ¹	Sample Depth	Surface	Surface	Surface	Surface	Sur	face	Surface	Bottom	Surface	Surf	ace	Surface	Su	rface	Bottom	Surface	Sur	face	Surface	Surface	Surface
		Date	09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/15	5/2009	09/17/2009	09/17/2009	09/14/2009	09/14/	2009	09/14/2009	09/1	7/2009	09/17/2009	09/14/2009	09/16	5/2009	09/16/2009	09/16/2009	09/16/2009
		Sample Type	Original	Original	Original	Original	Orig	5	Original	Original	Original	Origi		Original		ginal	Original	Original		ginal	Original	Original	Original
		Units	Result Notes	Result Notes	Result Notes	Result Notes	Result	Notes 1	Result Notes	Result Notes			Notes Re	sult Note	es Result	Notes	Result Notes	Result Note	s Result	Notes	Result Notes	Result Notes	Result Notes
		c	121	25	20	F F T	2			IN SITU	MEASUREMEN			52	_	-	1	4.4	702	г	792	792	792
Stream Flow ³ Secchi		cfs ft	121	25	30		2		9		6	763.7		53				4.4	782		782	782	782
Temperature		°C	8.79	18.26	17.98	15.87	16.12		23.28	7.43	8.79	8.42	2	.0.85	20.03		9.11	11.38	12.35		14.33	16.63	16.08
Dissolved		% sat	104.8								104.8	102.9						83.1			86.6		
Oxygen Dissolved	7	mg/L	10.22	8.17	7.65	9.67	7.92		7.71	8.02	10.22	10.13		7.25	9.2		6.13	7.49	9.5		7.26	8.72	7.67
Oxygen Specific	(minimum) 150	μmohms	0.068	0.15	0.151	0.137	0.192		0.1	0.1	0.068	0.065		0.107	0.1		0.1	0.069	0.075		0.078	0.081	0.083
Conductance		•				8.07			8.37				-		8.33		7.36						
рн Turbidity	6.5-8.5	stnd units NTU	8.31 3.1	7.51	7.31	3.3	7.81 14.5		0.4	7.21	8.31	7.72		7.91	8.53		/.30	7.75 6.3	7.76		7.7	8.05 1.5	8.01 15.4
Turblaity		1110	5.1	1.5	0.5	5.5	14.5	<u> </u>	0.4	BASIC	WATER QUALI			0	147.2	'		0.5	0.5		1.2	1.5	13.4
Carbon,																T							
Dissolved Organic		mg/L	0.61	0.67	1.2	0.98	0.69		1.1	1.1	1.1	1.3		1	1.1		1.4	1.4	1.1		1.1	1.1	1.1
Carbon, Total Organic		mg/L	0.73	0.82	1.4	1.2	0.76		1.1	1.2	1.1	1.2		1.1	1.3		1.4	1.4	1.2		1.2	1.1	1.2
Solids, Total Dissolved	500	mg/L	70	66	54	92	66		50	36	51	51		58	40)	46	53	62		68	64	68
Solids, Total Suspended		mg/L	1.5	1.2	1 U	4.5	1	U	1 U	1 U	1 U	1	U	1 U	1	U	1.5	14	1	U	1 U	1 U	15
A 11 11 14				1	Г	r				INO	RGANIC IONS	1 1				-	T T		_	r			
Alkalinity, Total (as CaCO3)	20 (minimum)	mg/L	72	72	72	86	80		36	34	34	31		44	36		34	54	1	U	37	37	38
Calcium		mg/L	20.4	20.9	11.3	21	22.1		9.71	9.16	9.35	8.69		12.1	9.18		8.29	9.02	9.32		9.52	9.76	9.19
Chloride	250	mg/L	0.68 J	0.7 J	0.88 J	1.7	0.76	J	0.63 J	0.5 J	0.53 J	0.49	J	2.6	0.63	J	0.8 J	0.63 J	0.74	J	0.82 J	0.93 J	0.88 J
Hardness, Total		mg/L	72	75	64	90	79		38	34	36	34		48	36		21	37	36		37	38	40
Magnesium		mg/L	5.09	5.29	9.24	8.63	5		2.77	2.62	2.78	2.59		3.84	2.73		2.78	2.71	2.87		3.06	3.41	3.3
Potassium		mg/L	0.6	0.606	0.766	1.34	0.361		0.607	0.519	0.519	0.512	0	.529	0.493		0.6	0.427 J	0.434		0.519	0.546	0.511
Sodium ⁴ Sulfate	20 250	mg/L	3.53 9.5	3.4 9.7	3.17 7.8	5.31	3.16 7.5		2.37 3.7	2.04	1.94 5.6	1.9 5.3		4.3 9.6	2.17	_	2.25 3.8	2.02	2.34		2.39 3.9	2.51 4.4	2.42 4.6
Sulfide, Total		mg/L mg/L	9.5 0.05 U	0.05 U	0.05 U	0.05 U	0.05			0.05 U		5.5		9.0	0.05		0.05 U	5.5	0.05		0.05 U	0.05 U	0.05 U
Sumae, Fotur			0.00	0.00 0	0.00	0.00 0	5.05		I		UTRIENTS				0.02	<u> </u>			0.05			0.00 0	
Ammonia (as N) ⁵	temp/pH dep.	mg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U
Nitrate (as N)	45	mg/L	0.1 U	0.02 J	0.1 U	0.028 J	0.1	U	0.1 U	0.027 J	0.036 J	0.1	U	0.1 U	0.1	U	0.069 J	0.021 J	0.1	U	0.028 J	0.1 U	0.1 U
Nitrite (as N)	1	mg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U
o-Phosphate (as P)		mg/L	0.028 J	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.083	J	0.1 U	0.1 U	0.1 U
Phosphorus, Total		mg/L	0.39	0.38	0.48	0.72	0.36		0.16	0.21	0.37	0.37		0.19	0.22		0.2	0.26	0.42		0.21	0.33	0.32
Total Kjeldahl Nitrogen		mg/L	0.56	0.7	0.84	0.7	0.56		0.7	0.56	0.5 U	0.5	U	0.56	0.56		0.56	0.56	0.5	U	0.5 U	0.56	0.56

Table 7.2B-5. Reservoir and stream reach sample results.

Yuba County Water Agency Yuba River Development Project FERC Project No. 2246

		River Name	North Yuba River	Middle Yuba River	Middle Yuba River	Oregon Creek	Oregon Creek	North Yuba River	North Yuba River	North Yuba River	Yuba River	South Yuba River	Yuba River	Yuba River	Yuba River	Yuba River	Yuba River	Yuba River	Yuba River
		Sample Location	New Bullards Bar Inflow	Above Our House Dam Diversion	Below Our House Dam Diversion	Above Log Cabin Diversion Dam	Below Log Cabin Diversion Dam	New Bullards Bar Reservoir ²	New Bullards Bar Reservoir ²	Below New Bullards Bar Dam	Below Colgate Tunnel	Englebright Inflow	Englebright Reservoir ²	Englebright Reservoir ²	Below Smartville gage	Below Deer Creek	Below Daquerre Diversion Dam	At Walnut Avenue	Marysville
	Standard	Lat./Long.	0655730, 4354999	0672624, 4364531	0672379, 4364362	0667280, 4367442	0667039, 4367286	0660148, 4362475	0660148, 4362476		0655730, 4354999		0649344, 4344972	0649344, 4344973	06449012, 4344349	0643788, 4342522	0634234, 4341040	0627459, 4337347	0621943, 4332656
Analyte	Criteria or	Sample ID	103410-2-1	103410-2-2	103410-2-3	103410-2-4	103410-2-5	103410-1-1A	103410-1-1B	103410-2-6	103410-2-7	103410-2-8	103410-1-2A	103410-1-2B	103410-2-9	103410-2-10	103410-2-11	103410-2-12	103410-2-13
	Benchmark ¹	Sample Depth	Surface	Surface	Surface	Surface	Surface	Surface	Bottom	Surface	Surface	Surface	Surface	Bottom	Surface	Surface	Surface	Surface	Surface
		Date	09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/17/2009	09/17/2009	09/14/2009	09/14/2009	09/14/2009	09/17/2009	09/17/2009	09/14/2009	09/16/2009	09/16/2009	09/16/2009	09/16/2009
		Sample Type	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original
		Units	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes	Result Notes
				· ·		· · · · ·			TOTAL META	ALS CONCENT	RATIONS								
Aluminum ⁶	87	μg/L	8.4	5.9	4.7	9.1	5.4	74.0	28.8	20.0	36.3	7.6	29.4	20.2	20.9	21.4	13.1	15.6	180
Arsenic ⁷	10	μg/L	4.91	5.42	1.08	4.07	1.01	0.39	0.36	0.48	0.51	0.59 Q	0.52	0.46	0.64	0.64	0.51	0.54	0.61
Cadmium	5	μg/L	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Chromium	50	μg/L	0.31	0.27	0.34	0.15	0.36	0.18 Q	0.28	0.24	0.23	0.18	0.24	0.22	0.24	0.22	0.22	0.16	0.50
Copper	1000	μg/L	0.40 Q	0.41 Q	0.41 Q	0.34 Q	0.29 Q	0.31 Q	0.41 Q	0.42 Q	0.43	0.76 Q	0.47 Q	0.59	0.49 Q	0.43 Q	0.43	0.44	0.96
Iron	300	μg/L	60.2	130	37.6	1770	56.4	15.5	14.5	43.9	43.0	44.5	21.3	19.6	64.0	43.9	14.0	33.2	243
Lead	15	µg/L	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.141
Mercury	50	ng/L	0.61	0.59	0.71	0.58	0.56	0.50 U	0.82	0.50 U	0.60	0.82	0.89	0.50 U	0.72	1.08	1.04	1.00	3.10
Methyl Mercury		ng/L	0.092	0.096 Q	0.073	0.277	0.077 Q	0.050 U	0.050 Q, U	0.067 Q	0.050 U	0.069	0.050 Q, U	0.050 Q, U	0.062	0.050 Q, U	0.052	0.052	0.109
Nickel	100	μg/L	0.95	1.06 Q	3.08	2.33	0.64 Q	0.10 Q, U	0.84	0.50	0.97	0.51 Q	0.55	0.84 Q	0.93 Q	0.64 Q	0.48 Q	0.44 Q	1.05
Selenium	50	μg/L	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U
Silver	100	μg/L	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Zinc	5000	μg/L	0.30	0.49	0.34	0.35 Q	0.26 Q	0.20 U	0.25 Q	0.32 Q	0.23 Q	0.20 Q, U	0.72	0.45	0.24 Q	0.25 Q	0.48 Q	0.25	0.84
									DISSOLVED ME		NTRATIONS		1		1	1	1		
Aluminum		μg/L	4.4	4.0 U	4.0 U	4.0 U	4.0 U	12.2	9.9	4.0 U	4.7	4.0 U	4.7	4.7	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Arsenic	150	µg/L	4.91	5.12	1.08	2.05	1.00	0.37	0.36	0.43	0.50	0.64 Q	0.52	0.39	0.58	0.58	0.50	0.50	0.52
Cadmium ⁸	Table 7.2B-4	μg/L	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Chromium ⁸	Table 7.2B-4	μg/L	0.24	0.21	0.32	0.10 U	0.33	0.17 Q	0.24	0.23	0.19	0.15	0.21	0.22	0.23	0.20	0.20	0.16	0.14
Copper ⁸	Table 7.2B-4	μg/L	0.51 Q	0.49 Q	0.43 Q	0.37 Q	0.40 Q	0.40 Q	0.42 Q	0.43 Q	0.39	0.85 Q	0.48 Q	0.82	0.60 Q	0.46 Q	0.68	0.43	0.41
Iron		μg/L α	49.9	83.0	31.8	143	53.6	10.0 U	10.0 U	26.6	25.3	35.5	10.0 U	10.0 U	37.1	10.0 U	10.0 U	10.0 U	12.8
Lead ⁸ Methyl	Table 7.2B-4	μg/L	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U	0.040 U
Mercury		ng/L	0.54 U	0.100 Q	0.050 U	0.211	0.077 Q	0.050 U	0.050 Q, U	0.077 Q	0.050 U	0.050 U	0.050 Q, U	0.050 Q, U	0.050 U	0.050 Q, U	0.053	0.050 U	0.067
Nickel ⁸	Table 7.2B-4	μg/L	0.88	1.14 Q	2.91	2.12	0.74 Q	0.17 Q	0.78	0.43	0.93	0.60 Q	0.52	0.90 Q	0.99 Q	0.68 Q	0.67 Q	0.47 Q	0.46
Silver ⁸	Table 7.2B-4	μg/L	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Zinc ⁸	Table 7.2B-4	μg/L	0.20 U	0.39	0.20	0.61 Q	0.34 Q	0.20 U	0.48 Q	0.53 Q	0.40 Q	0.31 Q	0.20 U	1.36	0.45 Q	0.32 Q	0.52 Q	2.19	0.20 U

			Samp	ole Location and Nu	mber				
Samp	le Date ¹	Emerald C	ove Marina	Dark Day	Dark Day Boat Ramp				
		103410-3-1	Duplicate	103410-3-2	103410-3-3				
			RM RESULTS (M	,					
	< 10% of samples > 40		< 200 MPN per 100	mL (geometric mea	n) (CVRWQCB 199	8)			
Round 1	9/6/09	<2		2	2				
Round 2	9/17/09	<2	<2	<2		<2			
Round 3	9/23/09	<2		<2	<2				
Round 4	9/28/09	4	7	<2					
Round 5	10/2/09	<2		<2	<2				
	Geometric Mean	<2		<2					
	< 10,000 N		AND A CONTRACT AND A CONTRACTACT AND A CONTRACT AND A CONTRACTACTACT AND A CONTRACTACTACTICACTACTACTACTACTACTACTACTACTACTACTAC		EPA 2003)				
Round 1	9/6/09	816		1733	517				
Round 2	9/17/09	136	136	78		46			
Round 3	9/23/09	2419		491	457				
Round 4	9/28/09	1733	1300	866					
Round 5	10/2/09	1553		<2419	690				
	Geometric Mean	937		674					
	<235 MPN per 100		ESULTS (MPN PE mple; < 126 MPN pe	,	e mean) (EPA 2003)				
Round 1	9/6/09	1		absent					
Round 2	9/17/09	absent	absent	absent		absent			
Round 3	9/23/09	absent		absent	absent				
Round 4	9/28/09	1	absent	absent					
Round 5	10/2/09	absent		absent	absent				
	Geometric Mean	absent		absent					
	ot contain oils, grease rface of the water or o	s, waxes or other ma		tions that cause nuise					
Labor Day Weekend	9/6/09	Ų	50	2 00 0	8 J				

Table 7.2B-6. Bacteria and Total Petroleum Hydrocarbon (TPH) sample results.

² During Round 2, a reference sample was also collected from upstream of the recreation sites and in the center of New Bullards Bar Reservoir. Notes:

Calculated geometric means provided in **bold** are greater than the Basin Plan Water Quality Objective (CVRWQCB 1998) or benchmark (EPA 2003).

J Results were evaluated to the method detection limit (MDL); detected concentrations > or = to the MDL but < the reporting limit (RL) were qualitifed with a "J" flag.

< Not detected

-- Not measured at this location and time.

Table 7.2B-7 2009 Average daily dissolved oxygen downstream of Project facilities, USACE facilities, and non-Project diversions for 18 days.

Sonde Location		ds Bar Dam ach	Colgate Powe	erhouse Reach		Powerhouse ach	Daguerre Point Dam Reach						
Start Date	9/5/2	2009	9/24	/2009	9/5/	2009	9/10/2009						
End Date	9/22/	/2009	10/7	/2009	9/22	/2009	9/29/	/2009					
Day	DO (mg/L)	Saturation (%)	DO(mg/L) DO(m		DO (mg/L)	Saturation (%)	DO (mg/L)	Saturation (%)					
DISSOLVED OXYGEN (mg/L, % saturation) "the monthly median of the mean daily DO concentration shall not fall below 85 percent of saturation in the main water mass, and the 95 percentile concentration shall not fall below 75 percent of saturation. DO concentrations shall not be reduced below the following minimum levels at any time: waters designated WARM 5.0 mg/l; waters designated COLD 7.0 mg/l; waters designated SPWN 7.0 mg/l." (CVRWQCB 1998)													
1	10.0	91.4	11.3	98.9	10.5	97.3	8.7	86.2					
2	10.1	91.4	11.4	98.8	10.5	97.5	8.6	85.1					

Yuba County Water Agency Yuba River Development Project FERC Project No. 2246

Table 7.2B-7 (continued)

Sonde Location			Colgate Powe	erhouse Reach		Powerhouse ach	Daguerre Point Dam Reach			
Start Date	9/5/2	2009	9/24	/2009	9/5/2	2009	9/10/	2009		
End Date	9/22/	2009	10/7	/2009	9/22/	/2009	9/29/	2009		
Day	DO (mg/L)	Saturation (%)	DO (mg/L)	Saturation (%)	DO (mg/L)	Saturation (%)	DO (mg/L)	Saturation (%)		
3	10.0	91.5	11.4	99.1	10.6	97.8	7.9	78.2		
4	10.1	91.0	11.3	98.5	10.5	97.3	9.2	89.1		
5	10.1	91.8	11.3	98.2	10.5	97.2	9.2	90.3		
6	10.1	91.9	11.6	99.8	10.5	96.9	9.2	89.0		
7	10.0	91.8	11.8	101.4	10.5	96.9	9.2	91.9		
8	10.0	91.3	10.8	94.2	10.4	96.6	9.1	90.3		
9	10.1	91.2	10.8	94.2	10.4	96.6	9.0	89.8		
10	10.1	92.0	10.8	93.4	10.4	96.6	9.0	90.1		
11	10.1	91.6	10.8	94.5	10.4	96.5	9.1	90.8		
12	10.1	91.9	10.9	94.7	10.4	96.4	8.8	87.0		
13	10.1	91.8	10.9	95.4	10.4	96.2	8.8	87.3		
14	10.1	91.5	11.0	95.1	10.4	96.8	9.1	89.3		
15	10.1	91.9	11.3	98.9	10.3	95.9	9.0	89.4		
16	10.1	91.6	11.4	98.8	10.3	96.1	8.9	87.0		
17	10.1	91.8	11.4	99.1	10.3	96.6	8.7	86.2		
18	10.2	91.8	11.3	98.5	10.3	96.4	8.8	86.7		
minimum	10.0	91.0	10.8	93.4	10.3	95.9	7.9	78.2		
maximum	10.2	92.0	11.8	101.4	10.6	97.8	9.2	91.9		